
	движется вдоль оси Ox . Его координата меняется в соответствии с
	t^2 , где A=2 м, B=3 м/c, C=5 м/c ² . Чему равен импульс тела в момент
времени $t = 2 c$?	
	3) 46 кг·м/с
2) 48 кг·м/с	4) 26 кг·м/с
	внение скорости, найти скорость через 2 с, затем пользуясь формулой
импульса найти импульс	
	одинаковой массой m движутся со скоростями υ и 2υ относительно
-	й в противоположных направлениях. Чему равен модуль импульса
-	системе отсчета, связанной с первым автомобилем?
1) 3mv 2) 2 mv	3) mv 4) 0
	чка движутся по горизонтальной дорожке. Как изменится модуль
	па них в течение 5 с действует сила трения о снег, равная 20 Н?
1) для ответа недостато	эчно данных
2) увеличится на 4 Н·с	
3) увеличится на 100 кг	
4) уменьшится на 100 в	
	другу летят шарики из пластилина. Модули их импульсов равны
соответственно 0,05 кг	г·м/с и 0,03 кг·м/с. Столкнувшись, шарики слипаются. Импульс
слипшихся шариков ра	вен
1) 0,08 кг∙м/с	3) 0,02 кг⋅м/с
2) 0,04 кг⋅м/с	4) 0,058 кг·м/с
5(A) С неподвижной	лодки массой 50 кг на берег прыгнул мальчик массой 40 кг со
скоростью 1м/с, нап	равленной горизонтально. Какую скорость приобрела лодка
относительно берега?	
1) 1m/c 2) 0.8m/c	3) 1.25 m/c 4) 0
	акон сохранения импульса.
$\overline{\mathbf{6(A)}}$ Человек, равноме	рно поднимая веревку, достал ведро воды из колодца глубиной 10
м. Масса ведра 1,5 кг	г, масса воды в ведре 10 кг. Чему равна работа силы упругости
веревки?	
1) 1150Дж	3) 1000Дж
2) 1300Дж	4) 850Дж
	формулу работы силы (при равномерном подъёме сила упругости будет
равна весу тела).	
7(A) Подъемный кран	равномерно поднимает вертикально вверх груз весом 1000 Н на
высоту 5 м за 5 с. Каку	ю мощность развивает подъемный кран во время этого подъема?
1) 0 B _T	3) 25000 B _T
2) 5000 B _T	4) 1000 B _T
Указание: применить фор	рмулу мощности, при этом работа равна работе силы тяжести.
8(A) Под действием	силы тяги двигателя, равной 1000 Н, автомобиль движется с
	72 км/ч. Мощность двигателя равна
1) 1·10 ⁴ B _T	3) $3 \cdot 10^4 \text{BT}$
2) $2 \cdot 10^4$ BT	4) $4 \cdot 10^4 \text{BT}$
<u>Указание:</u> применить фор	рмулу мощности.
	ргия тела 8 Дж, а величина импульса 4 Н·с. Масса тела равна
	3) 2 кг 4) 32 кг
Указание: применить фор	рмулы кинетической энергии и импульса тела.

10(A) Первый автомобиль имеет массу $1000~\rm kr$, второй $-500~\rm kr$. Скорости их движения изменяются с течением времени в соответствии с графиками, представленными на рисунке. Отношение E_{k2}/E_{k1} кинетических энергий автомобилей в момент времени t_1 равно

11(A) Недеформированную пружину жесткостью 30 Н/м растянули на 0,04 м. Потенциальная энергия растянутой пружины равна

- 1) 750 Дж
- 3) 0,6 Дж
- 2) 1,2 Дж
- 4) 0,024 Дж

Указание: применить формулу потенциальной энергии.

12(A) Потенциальная энергия взаимодействия с Землей гири массой 5 кг увеличилась на 75 Дж. Это произошло в результате того, что гирю

- 1) подняли на 7 м
- 3) подняли на 1,5 м
- 2) опустили на 7 м
- 4) опустили на 1,5 м

Указание: применить формулу потенциальной энергии.

13(A) Под действием груза массой 0,4 кг пружина растянулась на 0,1 м. Потенциальная энергия пружины при этом удлинении равна

1) 0,1 Дж 2) 0,2 Дж 3) 4,0 Дж 4) 4,2 Дж

<u>Указание:</u> применить формулу потенциальной энергии упруго деформированного тела, при этом жёсткость пружины найти из закона Гука, учитывая, что сила упругости пружины равна силе тяжести, действующей на тело, подвешенное к пружине.

14(A) Скорость автомобиля массой 1000кг увеличилась от 10 м/с до 20 м/с. Работа равнодействующей всех сил равна

- 1) 150000 Дж
- 3) 250000 Дж
- 2) 200000 Дж
- 4) 300000 Дж

<u>Указание:</u> применить теорему о кинетической энергии.

15(A) Тело массой 1 кг, брошенное вертикально вверх от поверхности земли, достигло максимальной высоты 20 м. С какой по модулю скоростью двигалось тело на высоте 10 м

? Сопротивлением воздуха пренебречь.

1) 10 m/c 2) 14m/c 3) 20 m/c

20 m/c 4) 40 m/c

<u>Указание:</u> применить закон сохранения энергии, учитывая, что в высшей точке подъёма у тела будет только потенциальная энергия, а на высоте 10 м и потенциальная и кинетическая энергия.

16(A) Пластилиновый шар массой 0,1 кг имеет скорость 1 м/с. Он налетает на неподвижную тележку массой 0,1кг, прикрепленную к пружине, и прилипает к тележке). Чему равна полная механическая энергия системы при ее дальнейших колебаниях? Трением пренебречь.

- 1) 0,025 Дж
- 3) 0,5 Дж
- 2) 0,05 Дж
- 4) 0,1 Дж

<u>Указание:</u> найти скорость системы после прилипания шар из законы сохранения импульса, а затем определить кинетическую энергию системы, она и будет полной механической энергией колебаний.

<u>17(A)</u> Угол наклона плоскости к горизонту равен 30°. Вверх по этой плоскости тащат ящик массой 90 кг, прикладывая к нему силу, направленную параллельно плоскости и равную 600 Н. Коэффициент полезного действия наклонной плоскости равен

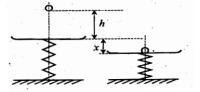
1) 67 %

2) 75 %

3) 80 %

4) 100 %

<u>Указание:</u> применить формулу КПД, учитывая, что полезная работа совершается силой тяжести, а полная – приложенной силой.


18(A) К столу прикреплена невесомая пружина жесткостью 20 Н/м с невесомой чашей наверху. На чашу роняют кусок замазки с высоты h=40см с нулевой начальной скоростью. Величина деформации пружины равна х =10 см. Масса замазки равна

1) 20 г

2) 25 г

3) 50 г

4) 250 Γ

<u>Указание:</u> применить закон сохранения энергии. Нулевой уровень потенциальной энергии выбрать на уровне максимальной деформации пружины.

<u>19(В)</u> Шарик скользит без трения по наклонному желобу, затем движется по «мертвой петле» радиуса R. Рассчитайте силу давления шарика на желоб в верхней точке петли, если масса шарика 100 г, а высота, с которой его отпустили равна 4R.

<u>Указание:</u> для верхней точки петли записать второй закон Ньютона, при этом $a = a_{\iota\iota}$. Скорость найти из закона сохранения энергии.

20(С) Брусок массой m_1 =500г соскальзывает по наклонной плоскости с высоты h=0,8м и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой m_2 =300 г. Считая столкновение абсолютно неупругим, определите общую кинетическую энергию брусков после столкновения. Трением пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.

<u>Указание:</u> для соскальзывания бруска с наклонной плоскости применить закон сохранения энергии, для столкновения – закон сохранения импульса, а затем формулу кинетической энергии.

Ответы к заданиям на законы сохранения

1. Ответы к обучающим заданиям

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A
3	1	4	3	2	1	4	2	2	4
11 A	12 A	13 A	14 A	15 A	16 A	17 A	18 A	19 A	20 A
4	3	2	1	2	1	2	1	3H	2,5Дж

2. Ответы к тренировочным заданиям

1A	2 A	3 A	4 A	5 A	6 A	7 A	8 A	9 A	10 A
1	3	2	2	2	1	3	3	2	3
11 A	12 A	13 A	14 A	15 A	16 A	17 A	18 A	19 A	20 A
4	3	4	3	2	3	3	1	6м	60°

3. Ответы к контрольным заданиям

1A	2 A	3 A	4 A	5 A	6 A	7 A	8 A	9 A	10 A
3	3	3	1	2	3	2	4	3	1
11 A	12 A	13 A	14 A	15 A	16 A	17 A	18 A	19 A	20 A
1	4	1	4	2	2	2	4	10m/c^2	8000м