1.Обучающие задания по МКТ

- <u>1(A)</u> Укажите пару веществ, скорость диффузии которых наибольшая при прочих равных условиях:
- 1) раствор медного купороса и вода
- 2) пары эфира и воздух
- 3) свинцовая и медная пластины
- 4) вода и спирт
- **2(A)** Какова масса 25 моль углекислого газа?
- 1) 1,5 кг 2) 1,1 кг 3) 0,9 кг 4) 1,3 кг

<u>Указание:</u> найти молярную массу CO_2 , по формуле m = vM определить массу.

- 3(A) Температура железного бруска 41° C, а температура деревянного бруска 285 K. Температура которого бруска выше?
- 1) железного
- 2) деревянного
- 3) температура брусков одинакова
- 4) сравнивать температуры брусков нельзя, так как они выражены в разных единицах.

Указание: воспользоваться формулой T=t+273.

4(A) На рисунке показана схема опыта Штерна по определению скорости молекул. Пунктиром

обозначена траектория

атомов серебра, летящих

- 1) только внешний цилиндр вращался по часовой стрелке
- 2) только внутренний цилиндр вращался по часовой стрелке
- 3) оба цилиндра вращались по часовой стрелке
- 4) оба цилиндра вращались против часовой стрелки.

5(А) Модель идеального газа предполагает, что...

А. молекулы не притягиваются друг к другу.

Б. молекулы не имеют размеров.

1) только А

3) и А, и Б

только Б

- 4) ни А, ни Б
- **<u>6(A)</u>** Воздух в комнате состоит из смеси газов: водорода, кислорода, азота, водяных паров, углекислого газа и др. Какие из физических параметров этих газов обязательно одинаковы при тепловом равновесии?
- 1) температура
- 2) давление
- 3) концентрация
- 4) средний квадрат скорости теплового движения молекул.
- <u>7(A)</u> В баллоне находится газ, количество вещества которого равно 4 моль. Сколько молекул газа находится в баллоне?
- 1) $6 \cdot 10^{23}$ 2) $12 \cdot 10^{23}$ 3) $24 \cdot 10^{23}$ 4) $36 \cdot 10^{23}$

 $\underline{\mathit{Указание:}}$ в 1 моле вещества содержится число частиц равное N_A .

8(A) Как изменится давление идеального газа на стенки сосуда, если в данном объеме скорость каждой молекулы удвоилась, а концентрация молекул не изменилась?

- 1) не изменится
- 2) увеличится в 2 раза
- 3) увеличится в 4 раза
- 4) уменьшится в 2 раза

Указание: применить основное уравнение МКТ идеального газа.

- 9(A) Давление 10^5 Па создается молекулами газа, масса которых $3 \cdot 10^{-26}$ кг при концентрации 10^{25} м⁻³. Чему равна среднеквадратичная скорость молекул?
- 1) 1 mm/c

 $3)\ 300\ \text{m/c}$

2) 1 cм/c

4) 1000 m/c

Указание: применить основное уравнение МКТ идеального газа.

- 10(A) Сколько частиц содержится в 8 г кислорода, если степень его диссоциации 10%?
- $1) 1.5 \cdot 10^{23}$
- 3) $1,35\cdot10^{23}$
- 2) $1,5\cdot10^{22}$
- 4) $1.65 \cdot 10^{23}$

<u>Указание:</u> учесть, что после диссоциации (распада молекул на атомы) 10% от общего числа молекул кислорода распадется на атомы, число которых будет в 2 раза больше, чем число распадающихся молекул.

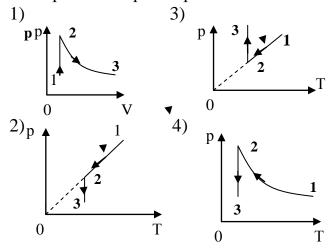
- <u>11(A)</u> Два одинаковых сосуда, содержащие одинаковое число молекул азота, соединены краном. В первом сосуде $v_{\text{ср.кв.1}} = 565 \text{ м/c}$, во втором $-v_{\text{ср.кв.2}} = 707 \text{ м/c}$. Кран открывают. Чему будет равна среднеквадратичная скорость молекул после того, как установится равновесие?
- 1) 600 m/c 2) 630m/c 3) 636 m/c 4) 640 m/c

Указание: воспользоваться формулой среднеквадратичной скорости.

- 12(A) Азот (молярная масса 0,028 кг/моль) массой 0,3 кг при температуре 280 К оказывает давление на стенки сосуда, равное $8,3\cdot10^4$ Па. Чему равен объем газа?
- 1) 0.3 m^3 2) 3.3 m^3
- $3) 0.6 \text{ m}^3$
- 4) 60 m^3

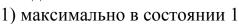
Указание: воспользоваться уравнением Менделеева-Клапейрона.

- **13(A)** Как изменится давление идеального газа постоянной массы при увеличении абсолютной температуры и объема в 2 раза?
- 1) увеличится в 4 раза
- 2) уменьшится в 4 раза
- 3) не изменится
- 4) увеличится в 2 раза.

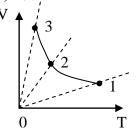

Указание: воспользоваться уравнением Клапейрона.

- **14(A)** Идеальный газ, занимающий объем 15 л, охладили при постоянном давлении на 60 K, после чего объем его стал равным 12 л. Первоначальная температура была равна:
- 1) 210 K 2) 240 K 3) 300 K 4) 330 K

Указание: воспользоваться уравнением изобарного процесса.


15(А) Газ изохорно охлаждается, а затем

изотермически расширяется. На каком из графиков представлены эти процессы?



16(А) На рисунке представлен график изменения состояния

идеального газа. На основании данных графика можно сказать, что давление газа...

- 2) максимально в состоянии 2
- 3) максимально в состоянии 3
- 4) одинаково во всех состояниях

Указание: Точки 1,2,3 соединить с началом координат.
Эти прямые соответствуют изобарным процессам, причем чем меньше угол наклона прямой к оси абсцисс, тем больше давление.

17(A) Какое свойство отличает кристалл от аморфного тела?

- 1) анизотропность
- 3) твердость
- 2) прозрачность
- 4) прочность

18(A) Как изменяется внутренняя энергия вещества при кристаллизации?

- 1) увеличивается
- 2) не изменяется
- 3) уменьшается
- 4) может увеличиваться или уменьшаться в зависимости от кристаллической структуры тела

19(A) При испарении жидкость остывает. Молекулярно-кинетическая теория объясняет это тем, что чаще всего жидкость покидают молекулы, кинетическая энергия которых...

- 1) ...равна средней кинетической энергии молекул жидкости.
- 2) ...превышает среднюю кинетическую энергию молекул жидкости.
- 3) ...меньше средней кинетической энергии молекул жидкости.
- 4) ...равна суммарной кинетической энергии молекул жидкости.

20(A) Давление насыщенного водяного пара при температуре 40° С приблизительно равно $6 \cdot 10^{3}$ Па. Каково парциальное давление водяного пара в комнате при этой температуре, если относительная влажность 30 %?

- 1) $1.8 \cdot 10^3$ Па
- 3) $1,2\cdot 10^3$ Па
- 2) $3 \cdot 10^3 \, \text{Ta}$
- 4) $2 \cdot 10^3 \, \text{Ta}$

Указание: воспользоваться формулой относительной влажности воздуха.

21(A) С помощью психрометрической таблицы определите показания влажного термометра, если температура в помещении 16° С, а относительная влажность воздуха 62%:

- 1) 20 °C
- 2) 22 °C
- 3) 12 °C
- 4) 16°C

	Психрометрическая таблица												
Пока-	Разность показаний сухого и влажного												
зания сухого	термометров												
термо-	0 1 2 3 4 5 6 7 8 9												
метра													
^{0}C	Относительная влажность, %												
10	100	88	76	65	54	44	34	24	14	5			
12	100	89	78	68	57	48	38	29	20	11			
14	100	89	79	70	60	51	42	34	25	17			
16	100 90 81 71 62 54 45 37 30 22												
18	100 91 82 73 65 56 49 41 34 27												
20	100	91	83	74	66	59	51	44	37	30			
22	100	92	83	76	68	61	54	47	40	34			

Указание: с помощью таблицы определим разность в показаниях сухого и влажного термометров, а затем температуру влажного термометра.

22(В) Два сосуда, содержащих одинаковую массу одного и того же газа, соединены трубкой с краном. В первом сосуде давление 10^5 Па, во втором $3 \cdot 10^5$ Па. Какое давление установится после открытия крана, если температура в сосудах была одинаковой и не менялась?

Решение:

23(В) Из баллона израсходовали некоторую часть кислорода, в результате чего давление в баллоне уменьшилось от $p_1 = 8$ МПа до $p_2 = 6.8$ МПа. Какая масса кислорода Δm была израсходована, если первоначальная масса кислорода в баллоне т=3,6 кг.

Решение:
$$p_1V = \frac{m_1RT}{M}$$
 $p_2V = \frac{m_2RT}{M}$
 $\Delta m = m_1 - m_2$
 $D = \frac{m_1}{M}$
 $D = \frac{m_1}{M}$
 $D = \frac{m_1}{M}$
 $D = \frac{m_1}{M}$
 $D = \frac{m_2}{M}$
 $D = \frac{m_2}{M}$
 $D = \frac{m_1}{M}$
 $D = \frac{m_2}{M}$
 $D = \frac{m_1}{M}$
 $D = \frac{m_2}{M}$
 $D = \frac{m_1}{M}$
 $D = \frac{m_2}{M}$

24(С) Как изменится температура идеального газа, если увеличить его объем в 2 раза при осуществлении процесса, описываемого формулой $pV^4 = const$?

Решение:

$$p_1 V_1 = vRT_1 p_2 2V_1 = vRT_2 p_1 V_1^4 = p_2 (2V_1)^4$$

$$\begin{cases} \frac{T_2}{T_1} = \frac{2p_2}{p_1} = \frac{2p_2}{16p_2} = \frac{1}{8} \end{cases}$$

Температура уменьшится в 8 раз.

25(С) Кристалл поваренной соли имеет кубическую форму и состоит из чередующихся ионов Na и Cl. Найти среднее расстояние d между их центрами, если плотность соли $\rho = 2200 \frac{\kappa z}{v^3}$.

$$\frac{\textbf{Решение:}}{M} = \frac{N_{ob}}{N_A}, \quad \rho V = \frac{N_{ob}}{N_A}M, \quad \frac{V}{N_{ob}} = \frac{M}{\rho N_A}. \quad \textbf{Так как } N_{ob} = N_{Na} + N_{Cl} \quad \textbf{u} \quad N_{Na} = N_{Cl} = N, \quad \textbf{mo}$$

$$\frac{V}{2N} = d^3 = \frac{M}{2\rho N_A}, \quad d = \sqrt[3]{\frac{M}{2\rho N_A}}$$

$$d = \sqrt[3]{\frac{M}{2\rho N_A}}$$

4.Ответы к заданиям по МКТ

1.Ответы к обучающим заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A
2	2	1	4	3	1	3	3	4	4	4	1	3	3
15A	16A	17A	18A	19A	20A	21B	22B		23C	24C		25C	
2	1	1	3	2	1	3	•	· 10 ⁵ Ia	0,54 кг	г Умен. в 8 раз		2,8·10 ⁻¹⁰	

2. Ответы к тренировочным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A	15A	16A
4	1	3	3	4	2	1	1	2	3	4	4	3	4	1	3
17	A	18A	19	A	20B		21B		22	2B	23B	24	IC .	25	SC
3	3	3	4	.	6 Г	Ia	10,2 МПа		425 м/с		25 cm ²	0,5		3300 Па	

24С При изотермическом увеличении объема жидкость начинает испаряться. Давление пара при этом не изменяется до тех пор, пока вся жидкость не испариться (пар остается насыщенным, и его давление определяется температурой). Дальнейшее увеличение объема вызывает уменьшение давления по закону Бойля-Мариотта. Пусть p_1, V_1, T_1 ; p_2, V_2, T_2 - начальное и конечное давление пара, его объем и

температура. Уравнения состояния при этом имеют вид: $p_1 V_1 = \frac{m_1}{M} RT \;, \qquad p_2 V_2 = \frac{m_1 + m_2}{M} RT \;.$

По условию V_2/V_1 =3, p_1/p_2 =2. Разделив уравнения, находим $\frac{p_2V_2}{p_1V_1}=\frac{m_1+m_2}{m_1}$, $\frac{m_2}{m_1}=\frac{3}{2}-1=0$,5.

25С Условие равновесия поршня: $mg + F_1 = F_2$, где m — масса поршня; F_1 - сила давления на поршень газа, находящегося в верхнем отсеке; F_2 - сила давления на поршень газа, находящегося в нижнем отсеке. Силы давления рассчитываются по формулам F = pS, где p-давление газа; S-площадь поршня. Давление газа может быть определено из уравнения Менделеева — Клапейрона. По условию $V_1 = V_2$, $T_1 = T_2$, $V_2 = 4V_1$.

$$p_1 = rac{v_1 RT}{V}\,, \;\; p_2 = rac{4v_1 RT}{V}\,,\;$$
 следовательно $rac{p_2}{p_1} = 4$ $mg + rac{p_2}{4}S = p_2 S\,,\;$ отсюда $\;\; p_2 = rac{mg}{S(1-rac{1}{4})} pprox 3300 \Pi a$

3. Ответы к контрольным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A	15A
2	3	3	1	2	2	2	2	3	4	1	3	2	2	2
16A	17A	18A	19A	20A	21B	22B			23B		1	24C		25C
4	3	2	1	1	160 K	1,24кг		$\Delta p = 0.14 \text{ M}\Pi a$		Умен.	100 кг			

24C

Решение.
$$p_1V_1=\nu RT_1$$

$$p_22V_1=\nu RT_2$$

$$\frac{T_2}{T_1}=\frac{2p_2}{p_1}=\frac{2p_2}{4p_2}=\frac{1}{2}\,,$$
 температура уменьшится в 2 раза.
$$p_1V_1^2=p_2(2V_1)^2$$

25С Шар с грузом удерживается в равновесии при условии, что сумма сил, действующих на него, равна нулю: $(M+m)g+m_{\Gamma}g-m_{B}g=0$, где М и m- массы оболочки и груза, $m_{\Gamma}-$ масса гелия, а $F=m_{B}g-$ сила Архимеда, действующая на шар. Из условия равновесия следует: $M+m=m_{B}+m_{\Gamma}$.

Давление р гелия и его температура Т равны давлению и температуре окружающего воздуха. Следовательно, согласно уравнению Клапейрона-Менделеева,

$$pV=rac{m_{\Gamma}}{M_{\Gamma}}RT$$
 и $pV=rac{m_{B}}{M_{B}}RT$, где V – объем шара. Отсюда: $rac{m_{\Gamma}}{M_{\Gamma}}=rac{m_{B}}{M_{B}}$; $m_{B}=rac{m_{\Gamma}M_{B}}{M_{\Gamma}}=7,25m_{\Gamma}$; $M+m=6,25m_{\Gamma}$.

Следовательно,
$$m_{\varGamma}=\frac{M+m}{6{,}25}=\frac{400\kappa z+225\kappa z}{6{,}25}=100\kappa z$$
 . Ответ: 100кг.