Муниципальный этап Всероссийской олимпиады школьников по физике 11 класс 2016-2017 учебный год

Задача №1

K концу висящей вертикально пружины, массой которой можно пренебречь, подвешивают груз массой m. Затем к середине уже растянутой пружины подвешивают еще один груз такой же массы. Определить длину растянутой пружины. Жесткость пружины равна k, а ее длина в нерастянутом состоянии l_0 .

Решение: При подвешивании первого груза пружина удлиняется на:

$$\Delta l = mg/k$$
 (2 балла),

т.е. каждая половина пружины удлиняется на:

$$\Delta l = mg/(2k)$$
 (2 балла).

При подвешивании второго груза длина нижней половины пружины не меняется. Удлинение же верхней половины пружины увеличивается вдвое и становится равным $\Delta l = 2mg/(2k)$, так как сила натяжения этой части пружины возрастает в два раза (2 балла). Удлинение всей пружины, таким образом, станет равным:

$$\frac{mg}{2k} + \frac{mg}{k} = \frac{3}{2} \frac{mg}{k}$$
 (2 балла),

а длина пружины будет:

$$l_0 + \frac{3}{2} \frac{mg}{k}$$
 (2 балла).

Ответ: $l_0 + \frac{3}{2} \frac{mg}{k}$.

Солнце притягивает любую точку на земной поверхности сильнее, чем Луна, а между тем явление приливов и отливов вызывается главным образом действием Луны, а не Солнца. Почему? Во сколько раз приливное действие Луны отличается от приливного действия Солнца? Расстояние от Земли до Луны равно 384 тысяч километров. Необходимые справочные материалы взять из приложенных таблиц.

Космическое тело	Средний радиус, м	Масса, кг	Средняя плотность, г/см ³	Период вращения вокруг оси, сутки
Солнце	6,95 · 10 ⁸	$ \begin{array}{r} 1,99 \cdot 10^{30} \\ 5,98 \cdot 10^{24} \\ 7,35 \cdot 10^{22} \end{array} $	1,41	25,4
Земля	6,37 · 10 ⁶		5,52	1,00
Луна	1,74 · 10 ⁶		3,30	27,3

Планета Солнеч- ной системы	Среднее рас- стояние от Солнца, 10 ⁶ км	Период обра- щения вокруг Солнца, в годах	Масса в единицах массы Земли
Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун	57,87 108,14 149,50 227,79 777,8 1426,1 2867,7	0,241 0,615 1,000 1,881 11,862 29,458 84,013 164,79	0,056 0,817 1,000 0,108 318,35 95,22 14,58 17,26

Решение: Явление приливов и отливов возникает вследствие того, что данное небесное тело сообщает различные ускорения всему земному шару в целом и воде, находящейся на его поверхности (2 балла). Всему земному шару в целом небесное тело сообщает такое же ускорение, какое оно сообщало бы телу, помещенному в центре земного шара. Но по закону всемирного тяготения ускорение, сообщенное телом массы M другому, находящемуся на расстоянии r, есть $a = \gamma M/r^2$ (1 балл), где γ — гравитационная постоянная. Следовательно, разность ускорений воды, нахолящейся на поверхности Земли, и всей Земли в целом выразится так:

находящейся на поверхности Земли, и всей Земли в целом выразится так:
$$x = \frac{\gamma M}{\left(d-R\right)^2} - \frac{\gamma M}{d^2} = \frac{\gamma M \left(2dR-R^2\right)}{d^2 \left(d-R\right)^2} \text{ (3 балла),}$$

где d — расстояние от небесного тела до центра Земли, а R — радиус Земли. Так как величиной R по сравнению с d можно пренебречь, то приближенно эта разность выразится так:

$$x \approx 2R \gamma M/d^3$$
 (2 балла).

Значение этой разности для Солнца и Луны и определяет величину приливного действия, вызываемого ими. Так как:

$$d_{\text{Луны}} \approx 60$$
 земных радиусов;

$$d_{\text{Солнца}} \approx 23360$$
 земных радиусов;

то d^3 для Солнца больше, чем для Луны примерно в $59 \cdot 10^6$ раз, а масса Солнца больше массы Луны всего лишь примерно в $27 \cdot 10^6$ раз. Поэтому приливное действие Луны в 2.2 раза больше приливного действия Солнца:

$$\frac{x_{\rm Луны}}{x_{\rm Солниа}} = \left(\frac{d_{\rm C}}{d_{\rm J}}\right)^3 \cdot \frac{M_{\rm J}}{M_{\rm C}} \approx 2.2$$
 (2 балла).

Ответ: $x_{\text{Луны}} / x_{\text{Солнца}} \approx 2.2$.

На абсолютно гладком столе лежит цепочка, свешивающаяся наполовину за край стола. Как изменится время ее соскальзывания, если к концам цепочки прикрепить две одинаковые массы?

Решение: Пусть в некоторый момент со стола свисает часть цепочки длиной x, причем для простоты положим, что в начальный момент x=l/2, где l — длина всей цепочки. Тогда сила, приводящая цепочку в движение, будет пропорциональна весу свисающей части, т.е. $m_0 gx$ (1 балл), где m_0 — масса единицы длины цепочки. Ускорение движения будет равно $m_0 gx/m$ (1 балл), где m — масса цепочки. В начальный момент, когда $m_0 x = m/2$ (1 балл), ускорение равно g/2, а затем оно возрастает, так что движение цепочки неравномерно ускоренное.

Если к концам цепочки прикрепить одинаковые массы M, то движущей силой будет $m_0gx+Mg=(m_0x+M)g$ (1 балл), а ускорение цепочки в некоторый момент $(m_0x+M)g/(m+2M)$ (1 балл). Для решения вопроса о том, в каком случае цепочка соскользнет быстрее, нужно выяснить, в каком случае ускорение быстрее нарастает. Для этого надо сравнить два выражения: m_0gx/m и $(m_0x+M)g/(m+2M)$. Чтобы сравнить эти две дроби, приведем их к одному знаменателю и сравним числители. Числитель первой дроби будет: $(m_0gxm+2m_0gxM)$, числитель второй дроби — $(m_0gxm+Mmg)$ (2 балла). Ясно, что эти числители равны между собой в начальный момент, когда $m_0x=m/2$. В последующие моменты ускорение в первом случае всегда больше, чем во втором случае (2 балла).

Итак, цепочка соскользнет быстрее, когда масс на ее концах не будет (1 балл).

Ответ: цепочка соскользнет быстрее, когда масс на ее концах не будет.

Для нагревания 1 кг неизвестного газа на 1 К при постоянном давлении требуется 912 Дж, а для нагревания при постоянном объеме – 649 Дж. Что это за газ?

Решение: Когда газ нагревается при постоянном объеме, затрачиваемая энергия идет только на изменение внутренней энергии газа, а при нагревании при постоянном давлении — еще и на совершение работы. Закон сохранения энергии для этих двух случаев запишется так:

$$mc_V \cdot \Delta t = \Delta U$$
 (2 балла), $mc_p \cdot \Delta t = \Delta U + A$ (2 балла),

где c_p — удельная теплоемкость газа при постоянном давлении, c_V — удельная теплоемкость газа при постоянном объеме, Δt — изменение температуры, ΔU — изменение внутренней энергии газа, m — масса газа и $A=p\Delta V$ (1 балл) — совершенная при расширении газа работа (ΔV — изменение объема, p — давление).

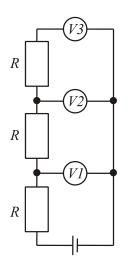
Так как при одинаковом изменении температуры газа изменение его внутренней энергии одинаково независимо от того, происходит ли это нагревание при постоянном объеме или при постоянном давлении, то можно записать:

$$mc_{p} \cdot \Delta t = mc_{V} \cdot \Delta t + p\Delta V$$
 (1 балл). (1)

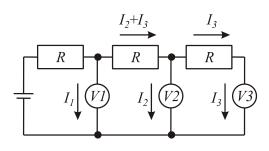
Пользуясь уравнением газового состояния, можно совершенную газом работу выразить через массу газа m и газовую постоянную R:

$$A = p\Delta V = \frac{m}{M}R \cdot \Delta t$$
 (1 балл).

Подставив это выражение в уравнение (1), получим:


$$c_p = c_V + \frac{R}{M}$$
 (1 балл),

откуда:


$$M = \frac{R}{c_n - c_V} \approx 32 \cdot 10^{-3} \text{ кг/моль (1 балл)}.$$

Неизвестный газ – кислород (1 балл).

Ответ: кислород.

Цепь, показанная на рисунке, собрана из одинаковых резисторов и одинаковых вольтметров. Первый вольтметр показывает $U_1 = 10~\mathrm{B}$, а третий $U_3 = 8~\mathrm{B}$. Какое показание второго вольтметра?

Решение: Обозначив через r сопротивление каждого из вольтметров, вводя силы тока, как показано на схеме, можно записать:

$$U_{3}=rI_{3}\,,\qquad U_{2}=rI_{2}\,,\qquad U_{1}=rI_{1}$$
 (2 балла).

С другой стороны:

$$U_2 = U_3 + I_3 R = U_3 + U_3 \frac{R}{r}$$
 (2 балла), (1)

$$U_1 = U_2 + (I_2 + I_3)R = U_2 + (U_2 + U_3)\frac{R}{r}$$
 (2 балла). (2)

Исключая из этой системы уравнений отношение R/r, получаем:

$$U_2^2 + U_2 U_3 - U_1 U_3 - U_3^2 = 0$$
 (2 балла).

Отсюда:

$$U_2 = -\frac{1}{2}U_3 + \sqrt{\frac{U_3}{4} \left(5U_3 + 4U_1\right)} \approx 8.6 \; \mathrm{B} \; (2 \; \mathrm{балла}).$$

Ответ: $U_2 \approx 8.6 \,\mathrm{B}$.